Fatigue behaviour analysis of AISI 316-L parts obtained by machining process and additive manufacturing

نویسندگان

چکیده

Abstract Due to the great technological growth, 3D printing is becoming of relevance within automotive, aerospace and even medicine sectors. With this manufacturing method, parts with a complex geometry can be manufacture considerable time material savings compared traditional processes such as machining. However, additive still have series unresolved problems. Present work makes comparison between AISI 316-L samples obtained by Selective Laser Melting technique Dry Machining. The focus in properties mainly relevant industrial sectors highlighted. Macro microgeometrical deviations, roughness, roundness straightness are each case study compared. Results show that, although for printed deposition direction plays fundamental role, being horizontal ones better results due layers, machining process one significant process. After macro deviations measurements, all were subjected rotational bending fatigue test mechanical behaviour study. As expected, mechanized specimens surface finish, among other aspects. Between manufactured specimens, vertical that presents transverse orientation deposited layers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Extrusion-based Additive Manufacturing Process for Ceramic Parts

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content (<1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, ...

متن کامل

Mechanical Properties of Boronized AISI 316, AISI 1040, AISI 1045 and AISI 4140 Steels

In this study, some mechanical properties of borided and unborided four steels were investigated. Boronizing of steels was performed by powder pack method at 1210 K for 4 h. The hardness of borides, boride layer thickness and room temperature tensile properties were measured and it was observed that hardness and tensile properties strongly depend on chemical composition of steels. In addition, ...

متن کامل

Additive Manufacturing: Reproducibility of Metallic Parts

The present study deals with the properties of five different metals/alloys (Al-12Si, Cu-10Sn and 316L—face centered cubic structure, CoCrMo and commercially pure Ti (CP-Ti)—hexagonal closed packed structure) fabricated by selective laser melting. The room temperature tensile properties of Al-12Si samples show good consistency in results within the experimental errors. Similar reproducible resu...

متن کامل

Process Mapping, Fracture and Fatigue Behavior of Ti-6al-4v Produced by Ebm Additive Manufacturing

The present work was conducted as part of a larger America Makes funded project to begin to examine the effects of changes in process variables on the resulting microstructure and fracture and fatigue behavior of as-deposited Ti-6Al-4V. In addition to presenting initial results on process mapping of the electron beam powder bed process, the present work also documents the location-dependent pro...

متن کامل

Metallurgical and Mechanical Behavior of AISI 316- AISI 304 during Friction Welding Process

Present study focuses on the micro-structural and mechanical behavior effect of friction time for similar (AISI 316-AISI 316 and AISI 304-AISI 304) and dissimilar (AISI 304-AISI 316) joint during continuous drive friction welding. The welding carried out with different friction time: 6.5, 8.5 and 10 s while kept all other conditions constant. The effect of that time on the strength, structural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Materials Science and Engineering

سال: 2021

ISSN: ['1757-8981', '1757-899X']

DOI: https://doi.org/10.1088/1757-899x/1193/1/012101